Multi-Scale Structure-Aware Network for Human Pose Estimation
نویسندگان
چکیده
We develop a robust multi-scale structure-aware neural network for human pose estimation. This method improves the recent deep conv-deconv hourglass models with four key improvements: (1) multi-scale supervision to strengthen contextual feature learning in matching body keypoints by combining feature heatmaps across scales, (2) multi-scale regression network at the end to globally optimize the structural matching of the multi-scale features, (3) structure-aware loss used in the intermediate supervision and at the regression to improve the matching of keypoints and respective neighbors to infer a higher-order matching configurations, and (4) a keypoint masking training scheme that can effectively fine-tune our network to robustly localize occluded keypoints via adjacent matches. Our method can effectively improve state-of-the-art pose estimation methods that suffer from difficulties in scale varieties, occlusions, and complex multi-person scenarios. This multi-scale supervision tightly integrates with the regression network to effectively (i) localize keypoints using the ensemble of multi-scale features, and (ii) infer global pose configuration by maximizing structural consistencies across multiple keypoints and scales. The keypoint masking training enhances these advantages to focus learning on hard occlusion samples. Our method achieves the leading position in the MPII challenge leaderboard among the state-ofthe-art methods.
منابع مشابه
Structure-Aware and Temporally Coherent 3D Human Pose Estimation
Deep learning methods for 3D human pose estimation from RGB images require a huge amount of domain-specific labeled data for good in-the-wild performance. However, obtaining annotated 3D pose data requires a complex motion capture setup which is generally limited to controlled settings. We propose a semi-supervised learning method using a structure-aware loss function which is able to utilize a...
متن کاملAdversarial Learning of Structure-Aware Fully Convolutional Networks for Landmark Localization
Landmark/pose estimation in single monocular images have received much effort in computer vision due to its important applications. It remains a challenging task when input images severe occlusions caused by, e.g., adverse camera views. Under such circumstances, biologically implausible pose predictions may be produced. In contrast, human vision is able to predict poses by exploiting geometric ...
متن کاملتخمین چنددوربینی حالت سه بعدی انسان با برازش افکنش مدل اسکلت سه بعدی مفصل دار در تصاویر سایه نما
Automatic capture and analysis of human motion, based on images or video is important issue in computer vision due to the vast number of applications in animation, surveillance, biomechanics, Human Computer Interaction, entertainment and game industry. In these applications, it is clear that 3D human pose estimation is an essential part. Therefore, its accuracy has a great effect on the perform...
متن کاملDual Path Networks for Multi-Person Human Pose Estimation
The task of multi-person human pose estimation in natural scenes is quite challenging. Existing methods include both top-down and bottom-up approaches. The main advantage of bottom-up methods is its excellent tradeoff between estimation accuracy and computational cost. We follow this path and aim to design smaller, faster, and more accurate neural networks for the regression of keypoints and li...
متن کاملPhysics-aware Simulation for Object Detection and Pose Estimation
This work proposes a fully autonomous process to train Convolutional Neural Networks (CNNs) for object detection and pose estimation in setups for robotic manipulation. The application involves detection of objects placed in a clutter and in tight environments, such as a shelf. In particular, given access to 3D object models, several aspects of the environment are simulated and the models are p...
متن کامل